1.
2.
Enzymatic ligation technologies for the synthesis of pharmaceutical peptides and proteins
1.
2.
蛋白質是生命活動的基礎功能元件,其化學合成與定點修飾已成為合成生物學領域探索復雜生物大分子“結構-功能”關系的重要前沿方向。近年來,以多肽固相合成與特異性拼接為核心的蛋白質合成和修飾技術蓬勃發(fā)展,打破了生命合成系統僅能使用天然及少數非天然氨基酸的瓶頸,為制備含有數百個氨基酸殘基的非天然蛋白質提供了技術平臺,讓原子水平的蛋白質人工設計成為現實。作為一類廣受關注的多肽拼接策略,基于天然或人工改造多肽連接酶的技術方法不僅在基礎研究領域拓展了人們對蛋白質這一生命核心元件的理解,還在工業(yè)領域嶄露頭角,被應用于多種多肽類藥物的生產。針對蛋白質合成領域中酶促多肽拼接技術平臺,本文介紹了Sortase A轉肽酶、Butelase 1轉肽酶以及Subtilisin人工連接酶的來源以及催化過程,探討了各自的優(yōu)勢以及局限性,并綜述了三種酶在蛋白質修飾、蛋白質合成、多肽藥物環(huán)化等方面的應用。通過計算機輔助設計、定向進化等技術對轉肽酶、連接酶進行改造來提升其在底物譜、催化活性等方面的特性,將化學方法與酶促方法聯用來建立多樣的生物大分子從頭設計與合成路線是目前的主要發(fā)展趨勢。
關鍵詞:
As a hot-spot of synthetic biology, chemical protein synthesis and modification have been widely applied to generate and functionalize naturally inaccessible proteins to meet scientific or pharmaceutical demands. Breaking away from the restrictions on the amino acids utilized in ribosomal protein synthesis, protein synthesis, and modification through the ligation of synthetic peptides have provided a platform for preparing the unnatural proteins that contain hundreds of residues, which realizes the artificial design of protein on the atomic scale. Although several chemical ligation methods have been reported, they are confronted with the defects like limited junction choices and complicated substrate preparations, impelling the scientists to find out alternative solutions and develop enzymatic strategies fit for different applications. As a group of popular peptide ligation methods, enzymatic ligation strategies not only expand our understanding of protein, but also exhibit great advantages in the industrial production of pharmaceutical peptides.Sortase A (SrtA) has been extensively utilized for protein terminal modification. The researchers from various fields have attempted to develop novel applications based on SrtA, for instance, characterizing the surface proteins of eukaryotic cells and expanding the choices of phage capsid proteins. Butelase 1 from a cyclopeptide-producing plant (Clitoria ternatea) is a highly efficient peptide ligase for peptide cyclization. Large proteins like GFP could be cyclized with excellent yield (>95%) as well, and Butelase 1 can be used for synthesizing peptide dendrimers, preparing protein thioesters, and modifying bacterial surfaces as well. Subtilisin-derived ligase is engineered from subtilisin and thought as a powerful tool for peptide cyclization, protein synthesis and terminal modification. In recent years, based on a calcium-independent subtilisin variant, a thermostable and organic solvent-tolerant peptide ligase was constructed and termed Peptiligase, which was further engineered afterward. Omniligase-1 is a universal ligase bearing broad sequence compatibility, while Thymoligase is specially designed for the production of the pharmaceutic peptide Thymosin-α1. These Peptiligase variants exhibit great advantages for industrial applications and have been considered as the most impressive enzymatic approach to date. The development of the existing enzymatic methods is anticipated to be ameliorated through enzyme engineering, to which rational design and directed evolution have contributed a lot. At the moment of computational protein design communicating with chemical protein synthesis, we anticipate that more peptide ligases would be discovered or designed. They may serve for generations of previously hard-to-access modified proteins.
Keywords:
本文引用格式
楊新宇, 朱彤, 李瑞峰, 吳邊.
YANG Xinyu, ZHU Tong, LI Ruifeng, WU Bian.
自20世紀20年代人類發(fā)現胰島素以來,蛋白多肽類藥物在體液調節(jié)、抗菌、抗炎、抗病毒及抗腫瘤等臨床應用方面的重要性愈加顯著[1-3]。截至2017年,全世界已有60多種多肽類藥物獲批上市,并以平均每年1種的速度持續(xù)增長[4-5]。雖然以重組表達為代表的現代分子生物學技術能夠高效生產重組蛋白且可摻入個別非天然氨基酸,但難以合成含有多種非天然氨基酸的人工設計多肽與蛋白質[6-7]。目前多肽固相合成法仍是便捷獲取非天然多肽的主要途徑,然而該方法能夠合成的多肽長度一般限于30~50個氨基酸殘基,研究人員需要將多個多肽片段順次拼接從而獲得完整目標蛋白[8-9]。除此之外,許多待研究的多肽或蛋白質分子需要在特定位點連接寡糖鏈、脂類分子、核酸、熒光分子或另一個蛋白質分子等多樣的功能基團。為了降低這些蛋白質的合成難度與成本,研究者采取了半合成策略,即利用化學方法合成一段帶有功能基團的短肽,再將該片段與重組表達的蛋白質連為一體[10-11]。兩段合成多肽的拼接以及蛋白質半合成均極具挑戰(zhàn),其難點在于需要保證酰胺縮合反應的區(qū)域選擇性,同時必須抑制末端氨基酸殘基的外消旋化副反應[12]。因此,探索具有嚴格區(qū)域選擇性且盡可能避免外消旋的多肽拼接方法成為了蛋白質化學合成與修飾領域近年來的研究焦點。
現有的多肽拼接方法分為化學法與酶促法兩大類?;瘜W法包括自然化學連接(native chemical ligation,NCL)[13]、無痕施陶丁格連接(traceless Staudinger ligation)[14]、酮酸-羥胺連接(ketoacid-hydroxylamine ligation,KAHA)[15]、絲氨酸/蘇氨酸連接(serine/threonine ligation,STL)[16]以及二硒醚-硒酯連接(diselenide-selenoester ligation,DSL)[17]等(圖1)。這些化學方法均采取了相似的策略,即兩條多肽片段的末端化學基團發(fā)生選擇性反應形成共價鍵,之后通過分子內重排形成肽鍵[12]。由Kent團隊提出的NCL是目前應用最為廣泛的一種方法,該方法的原理為將一條多肽的C端活化為硫酯形式,而另一條多肽的N端第一個殘基固定為Cys,二者經過硫醇-硫酯交換與分子內重排兩步反應形成肽鍵[18]。多肽硫酯可通過Boc固相合成法(保護基為叔丁氧羰基)直接合成,也可通過Fmoc固相合成法(保護基為9-芴甲氧羰基)制備多肽酰肼,再經過一步反應生成疊氮[19]或吡唑[20]中間產物,加入硫醇得到對應的多肽硫酯。若待連接片段為重組蛋白,則需要通過分子生物學方法在蛋白N端添加Cys殘基,或是將蛋白質C端活化為硫酯形式。目前最常用的EPL策略需在蛋白質C端融合表達內含肽(Intein),之后在反應體系中加入苯硫酚以進攻內含肽與目標蛋白的結合處,從而形成硫酯[21]。NCL方法的主要缺陷在于Cys是天然蛋白質中豐度最低的氨基酸種類之一,這嚴重限制了拼接位點的選擇范圍,盡管連接后可通過脫硫處理將Cys變?yōu)锳la,但如果存在其他非連接位點的Cys殘基,又需要增加保護與脫保護操作,這些步驟都會降低最終產物的收率[22]。此外EPL策略最初使用的內含肽長約140個氨基酸殘基,雖然后續(xù)研究縮短了融合表達內含肽片段的長度[23],仍可能對重組蛋白的表達產生較大影響。
圖1
與化學法的原理不同,酶促法反應的區(qū)域選擇性與立體選擇性來源于酶活性中心的空間位阻以及基團間的非共價作用,滿足多肽拼接在區(qū)域選擇性及抑制外消旋方面的基本要求。目前研究較深的酶促多肽拼接策略主要有三種,分別使用Sortase A轉肽酶、Butelase 1轉肽酶以及Subtilisin人工連接酶,這些方法在拼接位點限制、蛋白質表達難度、酶活性等方面凸顯出不同的優(yōu)勢,但在各個應用領域又分別有各自的限制,下文將系統闡述與比較。
1 多肽連接酶性質及其應用
1.1 Sortase A轉肽酶
SortaseA(SrtA)是源自革蘭氏陽性菌的一種轉肽酶,其中來源于金黃色葡萄球菌(Staphylococcus aureus)的SrtA轉肽酶應用最為廣泛,該酶識別蛋白的LPXTG序列(X為任意氨基酸殘基),切斷蘇氨酸和甘氨酸殘基之間的肽鍵并形成酶-底物中間體,隨后位于肽聚糖的寡聚甘氨酸肽橋進攻中間體,與目標蛋白C端之間形成新的肽鍵從而實現目標蛋白在細胞壁表面的錨定[24]。此外還存在識別LPXTA序列的SrtA轉肽酶,這種來自化膿性鏈球菌(Streptococcus pyogenes)的轉肽酶常出現在與金黃色葡萄球菌來源的SrtA轉肽酶聯合使用的場合,兩種酶對拼接位點的序列識別具有正交性[25]。SrtA轉肽酶可通過重組表達來大量制備,現已實現商品化,這讓不同領域的研究者均能嘗試以此為基礎開發(fā)新型生物技術[26]。與內含肽介導的EPL策略相比,使用SrtA轉肽酶催化蛋白質拼接時,僅需在目標蛋白末端融合表達長度僅有幾個氨基酸殘基的標簽序列,雖然最終會留下一段“疤痕序列”[圖2(a)],但與融合表達內含肽的策略相比,已大幅降低了蛋白質表達與折疊可能受到的影響,并且底物末端無需活化,獲取底物的難度與成本較低。
圖2
2004年,Mao[27]等首次利用SrtA轉肽酶進行蛋白修飾,在綠色熒光蛋白(green fluorescent protein,GFP)的C端融合表達LPETG(H)6標簽,再通過轉肽反應將葉酸等小分子化合物或另一個GFP分子連接至目標蛋白C端[圖2(b)],此后SrtA轉肽酶蛋白拼接技術很快被應用于多個生物學研究方向。細胞表面蛋白參與了細胞生長、分化、識別等眾多生物學過程,一直作為重要的藥物靶點受到廣泛關注,Tanaka等[28]將LPETGG序列添加至重組破骨細胞分化因子C端并運用SrtA轉肽酶方法進行修飾[圖2(c)],為細胞表面蛋白的時空動力學表征提供了新的研究思路,同樣的方法亦可用于細胞表面蛋白的N端修飾[29]。噬菌體表面展示技術是當下建立抗原抗體庫、篩選藥物等研究的常用手段,Hess等[30]提出了組合應用衣殼蛋白的策略,通過在M13噬菌體衣殼蛋白pIII與pVIII的N末端分別添加寡聚Gly和寡聚Ala(G5-pIII-A2-pVIII),先利用化膿性鏈球菌(Streptococcus pyogenes)來源的SrtA轉肽酶[Sortase A(strep)]將四甲基羅丹明(tetramethylrhodamine,TAMRA)修飾的七肽(KLPETAA)選擇性連接至pVIII,再利用金黃色葡萄球菌(Staphylococcus aureus)來源的SrtA轉肽酶[Sortase A(staph)]將帶有五肽標簽(LPETG)的駱駝科重鏈抗體7(camelid heavy-chain antibody 7,VHH7)選擇性連接至pIII,拓寬了噬菌體表面展示技術的功能范圍[圖2(d)]。與蛋白修飾相比,SrtA轉肽酶在環(huán)肽合成方面的成果較少,主要原因是連接后留下的“疤痕”較長,另外待環(huán)化多肽的長度一般需要超過19個氨基酸殘基,否則將傾向于肽段寡聚[31]。目前SrtA轉肽酶方法合成環(huán)蛋白的代表案例包括人唾液肽組蛋白Hst1[圖2(e)][32]、重組胱氨酸結環(huán)肽rMCoTI-II[33]以及向日葵胰蛋白酶抑制劑SFTI-1[34]等,環(huán)化后蛋白的熱穩(wěn)定性以及抗蛋白酶水解能力均有不同程度的提升。
SrtA轉肽酶的主要不足之處在于其催化的連接反應是可逆的,因而需要較高的多肽底物濃度以保證連接效率,此外酶的催化速率偏慢,酶用量一般為蛋白底物物質的量的0.1~1倍[10,35-36]。當下研究者的一種優(yōu)化思路是將SrtA轉肽酶與其他化學或酶學方法結合以取長補短,例如Muir團隊提出了基于內含肽自剪切技術與SrtA轉肽酶轉肽反應的TAIL策略,該策略可用于細胞核等復雜生物環(huán)境下的蛋白質末端不可逆連接,“疤痕”序列僅含一個Cys殘基[37]。清華大學劉磊團隊[38]則用肼或肼衍生物替代寡聚甘氨酸底物進攻SrtA轉肽酶-底物中間體,產物變?yōu)椴辉俦籗rtA轉肽酶識別的蛋白質酰肼,由此可制備NCL方法所需的蛋白質硫酯,或是在蛋白質末端引入炔基、疊氮等功能基團,通過點擊化學反應(click reaction)完成二次修飾。SrtA轉肽酶的技術擴展案例為蛋白質合成與修飾領域指出了一個潛在的發(fā)展方向,即搭配使用現有的化學與酶促方法,建立充分發(fā)揮多種方法優(yōu)勢的多肽連接策略。
1.2 Butelase 1轉肽酶
Butelase 1轉肽酶是熱帶藥用植物蝶豆(Clitoria ternatea)合成環(huán)肽的過程中催化多肽環(huán)化的連接酶,識別多肽C端的N/D-HV序列并切斷N/D的C端肽鍵形成酶-底物中間體,之后底物N端進攻中間體從而完成多肽的環(huán)化[39-40]。Butelase 1轉肽酶的連接位點最終僅留下一個氨基酸殘基(Asn或Asp)的“疤痕”[圖3(a)],底物N端的序列限制也比SrtA轉肽酶低得多,因此Butelase 1轉肽酶在環(huán)肽合成方面更具優(yōu)勢[40-41]。Tam團隊[42]利用Butelase 1轉肽酶合成了多種環(huán)蛋白,例如環(huán)狀細菌素AS-48[圖3(b)]、Uberolysin和Garvicin ML,其中AS-48對包括李斯特菌(Listeria monocytogenes)在內的多種致病細菌具有優(yōu)秀的抑制效果,其最小抑菌濃度低至0.1 μmol/L數量級,為開發(fā)針對“超級細菌”的特效藥物指明了新方向??杀籅utelase 1轉肽酶環(huán)化的多肽長短不一,大到含有約250個氨基酸殘基的GFP(環(huán)化速率約為SrtA轉肽酶的20 000倍),小到九肽,更短的多肽片段則一般會先寡聚后成環(huán)[43]。
圖3
實驗表明,Butelase 1轉肽酶催化的多肽首尾環(huán)化反應不可逆,但兩條多肽間的拼接反應是可逆的,釋放的HV二肽同樣可以作為親核試劑進攻酶-底物中間體,這導致Butelase 1轉肽酶和SrtA轉肽酶類似,需要較高的底物濃度來保證多肽拼接效率[44]。為了解決這一問題,Tam團隊[44]合成了C端序列為N-(thioglycolic)-V的多肽底物,此序列依舊能被Butelase 1轉肽酶識別,但釋放的硫代二肽無法進攻酶-底物中間體,改進后的方法用于泛素N端修飾時取得了高達95%的連接率[44]。不過在對連接率要求不是特別高的情況下,普通的底物已經能滿足大部分需求,例如在大腸桿菌表面的OmpA蛋白C端添加NHV序列,利用Butelase 1轉肽酶即可將帶有甘-異亮(GI)二肽的分子探針連接至OmpA蛋白上,從而實現細菌活體標記[圖3(c)][45]。當被修飾的蛋白質分子是一個以Lys為節(jié)點的多肽分支骨架時,就可以在這個“樹干”上連接“枝葉”,將八條具有抗菌作用的四肽(RLYR)連接至這種骨架上[圖3(d)],形成的樹狀多肽大分子的廣譜抑菌活性相比單體有大幅提升,最小抑菌濃度降低了2個數量級[46]。此外Butelase 1轉肽酶亦可用于蛋白硫酯的制備,目標蛋白C端僅需額外表達NHV三個氨基酸殘基,再通過轉肽反應連接多肽硫酯,無需內含肽的參與[圖3(e)][47]。
1.3 Subtilisin人工連接酶
Subtilisin是來自解淀粉芽孢桿菌(Bacillus amyloliquefaciens)的絲氨酸蛋白酶,具有六個廣譜的氨基酸殘基識別口袋,最初作為一種具有廣泛切割位點的蛋白水解酶而受到關注。早在20世紀60年代,Bender團隊[51]即使用化學方法將Subtilisin的關鍵活性基團從Ser轉變?yōu)镃ys(S221C),得到的人工連接酶Thiolsubtilisin在50% DMF溶液中展現出了多肽連接酶的活性,但在水溶液中效率極為低下[52]。隨著定點突變技術的發(fā)展,Wells團隊[53]獲得了重組表達的多肽連接酶Subtiligase,在S221C之外還引入了P225A突變來降低活性中心的空間位阻,將該酶的連接活性提高了1個數量級且水解活性降低了2個數量級,從此奠定了Subtilisin人工連接酶的基本形態(tài)。之后Wells團隊[54]開展了一系列酶工程研究,先是額外引入5個突變位點(M50F/N76D/N109S/K213R/N218S)以提高連接酶的穩(wěn)定性,使得連接酶在4 mol/L鹽酸胍的環(huán)境中依舊能保留50%的活性;后續(xù)又在噬菌體表面展示技術[55]以及蛋白質組技術[56]的輔助下,改造得到一系列具有不同序列識別偏好的Subtiligase突變體,從而擴展P1'與P2'口袋的底物譜。
相比SrtA轉肽酶和Butelase 1轉肽酶,Subtilisin人工連接酶對連接位點的序列限制更少,不會出現“疤痕”序列[圖4(a)],因此具有更廣闊的應用范圍。早在1994年,Wells團隊[57]便利用Subtiligase將6個多肽片段(每段長度在11~31個殘基)拼接為含有124個氨基酸殘基的核糖核酸酶A,?;w多肽N端被異煙堿(isonicotinyl,iNOC)基團保護以防止重復拼接,每輪連接反應后去除保護基來進行下一輪的連接[圖4(b)],這比NCL方法更早地實現了將多個多肽片段拼接為完整蛋白質[57]。Subtiligase還被用于環(huán)化長度在12~31個氨基酸殘基的多肽[圖4(c)][58],在內含肽的輔助下可以實現蛋白質C端的無痕拼接,例如Cole等[59]利用Subtiligase催化重組表達的泛素硫酯與合成的十肽-生物素(GLSGRGKGGK-Biotin)的連接,解除了?;荏w肽N端必須為半胱氨酸殘基的限制[圖4(d)]。不過Subtiligase目前最主要的應用方向仍是蛋白質N端修飾,Wells團隊[60]建立了一個細胞凋亡相關蛋白水解酶研究平臺,首先用Subtiligase將帶有生物素標簽的多肽連接在混合蛋白樣品的N端[圖4(e)],再用待研究的蛋白水解酶處理樣品,酶切后用親和素富集帶有生物素標簽的樣品N端片段,最后進行HPLC-MS/MS分析[60]。生物素標記與親和素富集的操作實現了酶解多肽片段的正向篩選,該平臺可以幫助研究人員發(fā)現特定蛋白水解酶在細胞中的潛在靶標蛋白與切割位點。
圖4
除Subtiligase之外,該家族的另一成員的研究也在近年獲得突破。荷蘭帝斯曼集團與格羅寧根大學合作,篩選了來自八十余種古菌和細菌的上百種Subtilisin家族蛋白酶,確定了一個不依賴鈣離子且高度穩(wěn)定的模板蛋白,并對其活性中心進行改造設計,創(chuàng)制了一種新型多肽連接酶Peptiligase[4,61]。與Subtiligase相比,Peptiligase的折疊不依賴前體肽,表達量大幅提高且連接活性更高(酶用量可低至多肽底物物質的量的萬分之三),還具有適用于工業(yè)生產的極高穩(wěn)定性,足以耐受60 ℃的高溫、高濃度DMF與鹽酸胍。后續(xù)帝斯曼集團將該部分業(yè)務獨立,組建了全世界第一家應用生物法合成多肽與蛋白質的商業(yè)公司——Enzypep公司。通過對Peptiligase的深入研究與改造,Enzypep公司推出了新一代廣譜連接酶Omniligase-1,為低序列限制的通用多肽拼接策略提供了優(yōu)秀的工具酶[62]。在多肽藥物Exenatide百克級合成過程中[圖4(f)],Omniligase-1催化下的兩段多肽拼接效率達到88%,總產率是原先固相合成法單次合成完整多肽的兩倍,展現了該酶極為突出的工業(yè)應用價值[63]。Omniligase-1亦可與二硫鍵構筑[64]、點擊化學[65]、肟連接(oxime ligation)[66]等方法聯用以合成具有多環(huán)結構的環(huán)肽。不只是廣譜連接酶,Enzypep公司還推出了針對特定藥物多肽序列的連接酶,例如專門用于生產Thymosin-α1的Thymoligase,該酶在P1位特異識別帶正電氨基酸,在P1'位特異識別帶負電氨基酸,兩段多肽底物的拼接效率高達94%,最終產率相比原有生產工藝提升了兩倍[67]。Peptiligase系列連接酶在連接/水解比、反應活性、底物序列限制等多個方面突破了工業(yè)化瓶頸,使多種藥物多肽的生產成本下降了60%~80%,顯著的工業(yè)應用優(yōu)勢讓Peptiligase系統被視為目前酶促多肽拼接領域最受矚目的技術平臺[68],針對不同應用方向來改造獲得滿足不同序列需求的突變體依舊是其未來的主要發(fā)展方向。
2 總結與展望
蛋白質重組表達與多肽固相合成技術在摻入非天然氨基酸、蛋白質表達系統適用性與多肽合成長度等方面都存在一定的限制,多肽連接技術可以將多個短肽連接成較長的肽段,同時解決了非天然氨基酸修飾與蛋白質合成長度的問題,而其中酶促多肽連接法由于其獨特的區(qū)域選擇性與立體選擇性在蛋白質合成領域發(fā)揮著愈加重要的作用。近年來三種酶促多肽拼接策略經過優(yōu)化與發(fā)展,各自具有其適合的應用場合(表1)。SrtA轉肽酶可通過重組表達獲得,也可以通過商業(yè)渠道購買,在蛋白質末端修飾方面便于使用,是目前應用案例最多的多肽連接酶,但在連接產物中會保留數個氨基酸殘基的連接“疤痕”,不適合用于特定序列多肽或蛋白質的合成。Butelase 1轉肽酶活性較高,拼接位點的序列限制比SrtA轉肽酶少,連接后殘留的“疤痕”較短,適合催化多肽與蛋白質的環(huán)化。然而該酶目前還無法通過重組表達制備,研究所用的酶需要從植物中獲得,每千克的植物材料約能提取出5 mg酶,難以實現大規(guī)模生產,這成為該酶應用的主要限制因素。Subtilisin人工連接酶則在拼接位點序列限制方面優(yōu)于前兩種酶,只需要底物C末端活化為氧酯或硫酯而無需具備特定的氨基酸序列,雖然該酶的6個氨基酸殘基識別口袋具有不同的氨基酸偏好性,但經過多年的研究優(yōu)化,該系列酶已經產生了較多廣譜突變體,并能整合具有互補選擇性的連接酶突變體,建立的酶工具箱用于不同領域,功能最為全面[61]。并且Peptiligase系列商品酶是當下唯一能在工業(yè)級合成中使用的酶,不過這些商品酶大多價格高昂且序列保密,尚未普遍推廣。三類酶促多肽拼接策略依舊具有較大的優(yōu)化空間,研究者不僅可以聯用化學和酶促方法來實現優(yōu)勢互補,建立不同的生物合成技術路線,還可以通過酶工程改造來提升連接酶的性能,過去三十年在這一方向已出現大量的理性設計與定向進化成果。而隨著運算能力大幅提升以及先進算法不斷涌現,近年來蛋白質計算設計得到了極大的發(fā)展,蛋白質從頭設計的時代已經到來[69]。在蛋白質人工合成與蛋白質計算設計這兩個領域相逢之際,計算機輔助手段既可以指導新型連接酶的設計與改造,提升連接/水解比,又能夠幫助設計具有特殊修飾的非天然蛋白質[70],為酶促多肽拼接策略開拓嶄新的應用場景。無論是化學方法與酶促策略的結合,還是人工合成與計算設計的相遇,均是不同領域的碰撞而閃現出的火花,深刻體現了學科交叉的意義與價值。相信在越來越多潛在相關領域的研究人員參與后,未來酶促多肽拼接策略的技術方法能再上一層臺階,應用于更多的多肽環(huán)化、蛋白質修飾乃至蛋白質全合成研究項目。
表1 三類酶促連接策略以及NCL方法的比較
Tab. 1
| 項目 | SrtA轉肽酶 | Butelase 1轉肽酶 | Subtilisin人工連接酶 | NCL | |
|---|---|---|---|---|---|
| 最初來源物種 | 金黃色葡萄球菌Staphylococcus aureus |
蝶豆 Clitoria ternatea |
解淀粉芽孢桿菌 Bacillus amyloliquefaciens |
—— | |
| 酶的獲取與產量[26] |
SrtA轉肽酶可通過商業(yè)渠道獲得或大腸桿菌重組表達
>40 mg/L |
Butelase 1轉肽酶通過植物材料提取
約5 mg/kg |
Omniligase-1可通過商業(yè)渠道獲得或枯草芽孢桿菌重組表達
>500 mg/L |
—— | |
| 底物活化 | 底物無需活化 | 底物無需活化 |
多肽C端活化為 氧酯或硫酯 |
多肽C端活化為 硫酯 |
|
|
連接 位點 序列 |
C端 | LPXT-G | N/D-HV | X4X3X2X1—,X2外均避免Pro,X4偏好疏水&芳香族氨基酸 | 無限制 |
| N端 | (G)n |
—X1X2,其中X1避免Pro和 酸性氨基酸,X2一般為ILVC |
—X1’X2’均避免Pro | Cys | |
| 連接“疤痕” | LPXT(G)n | 一個Asn/Asp殘基 | 無痕(X4X3X2X1 X1’X2’) | 一個Cys殘基 | |
|
應用 范圍 |
多肽首 尾環(huán)化 |
短肽(大于19個氨基酸殘基)和蛋白質皆可環(huán)化 | 短肽(大于9個氨基酸殘基)和蛋白質皆可環(huán)化 | 環(huán)化多肽一般不超過40個殘基 | 環(huán)化多肽一般不超過40個殘基 |
|
蛋白末 端修飾 |
蛋白質N端與C端皆可 | 蛋白質N端與C端皆可 | 大多用于蛋白質N端修飾鮮有C端修飾 | 蛋白質N端與C端皆可 | |
|
蛋白質 全合成 |
尚無應用報道 | 尚無應用報道 | 可以應用 | 廣泛應用 | |
《合成生物學》|從藥物多肽到蛋白質全合成:酶促拼接的方法原理與前沿應用
參考文獻
參考文獻
[1]
LAU J L, DUNN M K.
Therapeutic peptides: historical perspectives, current development trends, and future directions
[J]. Bioorganic & Medicinal Chemistry, 2018, 26(10): 2700-2707.
[本文引用: 1]
[2]
XIAO Y, JIE M, LI B, et al.
Peptide-based treatment: a promising cancer therapy
[J]. Journal of Immunology Research, 2015,2015: 761820.
[3]
VADEVOO S M P, GURUNG S, KHAN F, et al.
Peptide-based targeted therapeutics and apoptosis imaging probes for cancer therapy
[J]. Archives of Pharmacal Research, 2019, 42(2): 150-158.
[本文引用: 1]
[4]
TOPLAK A, NUIJENS T, QUAEDFLIEG P J L M, et al.
Peptiligase, an enzyme for efficient chemoenzymatic peptide synthesis and cyclization in water
[J]. Advanced Synthesis & Catalysis, 2016, 358: 2140-2147.
[本文引用: 2]
[5]
ZORZI A, DEYLE K, HEINIS C.
Cyclic peptide therapeutics: past, present and future
[J]. Current Opinion in Chemical Biology, 2017, 38: 24-29.
[本文引用: 1]
[6]
CHOW H Y, ZHANG Y, MATHESON E, et al.
Ligation technologies for the synthesis of cyclic peptides
[J]. Chemical Reviews, 2019, 119(17): 9971-10001.
[本文引用: 1]
[7]
WEEKS A M, WELLS J A.
Subtiligase-catalyzed peptide ligation
[J]. Chemical Reviews, 2020, 120(6): 3127-3160.
[本文引用: 3]
[8]
HOUEN G. Peptide antibodies[M]. New York: Humana Press, 2015: 33-50.
[本文引用: 1]
[9]
BEHRENDT R, WHITE P, OFFER J.
Advances in Fmoc solid-phase peptide synthesis
[J]. Journal of Peptide Science, 2016, 22(1): 4-27.
[本文引用: 1]
[10]
SCHMIDT M, TOPLAK A, QUAEDFLIEG P J L M, et al.
Enzyme-mediated ligation technologies for peptides and proteins
[J]. Current Opinion in Chemical Biology, 2017, 38: 1-7.
[本文引用: 3]
[11]
ZHANG Y, PARK K, SUAZO K F, et al.
Recent progress in enzymatic protein labelling techniques and their applications
[J]. Chemical Society Reviews, 2018, 47(24): 9106-9136.
[本文引用: 1]
[12]
AGOURIDAS V, MAHDI O E, DIEMER V, et al.
Native chemical ligation and extended methods: mechanisms, catalysis, scope, and limitations
[J]. Chemical Reviews, 2019, 119(12): 7328-7443.
[本文引用: 2]
[13]
CONIBEAR A C, WATSON E E, PAYNE R J, et al.
Native chemical ligation in protein synthesis and semi-synthesis
[J]. Chemical Society Reviews, 2018, 47(24):9046-9068.
[本文引用: 3]
[14]
TAM A, SOELLNER M B, RAINES R T.
Water-soluble phosphinothiols for traceless Staudinger ligation and integration with expressed protein ligation
[J]. Journal of the American Chemical Society, 2007, 129(37): 11421-11430.
[本文引用: 1]
[15]
PUSTERLA I, BODE J W.
The mechanism of the a-ketoacid-hydroxylamine amide-forming ligation
[J]. Angewandte Chemie International Edition, 2012, 51: 513-516.
[本文引用: 1]
[16]
ZHANG Y F, XU C, LAM H Y, et al.
Protein chemical synthesis by serine and threonine ligation
[J]. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(17): 6657-6662.
[本文引用: 1]
[17]
KULKARNI S S, WATSON E E, PREMDJEE B, et al.
Diselenide-selenoester ligation for chemical protein synthesis
[J]. Nature Protocols, 2019, 14: 2229-2257.
[本文引用: 3]
[18]
DAWSON P E, MUIR T W, CLARK-LEWIS I, et al.
Synthesis of proteins by native chemical ligation
[J]. Science, 1994, 266(5186):776-779.
[本文引用: 1]
[19]
ZHENG J, TANG S, QI Y, et al.
Chemical synthesis of proteins using peptide hydrazides as thioester surrogates
[J]. Nature Protocols, 2013, 8: 2483-2495.
[本文引用: 1]
[20]
FLOOD D T, HINTZEN J C J, BIRD M J, et al.
Leveraging the Knorr pyrazole synthesis for the facile generation of thioester surrogates for use in native chemical ligation
[J]. Angewandte Chemie International Edition, 2018, 57: 11634-11639.
[本文引用: 1]
[21]
MUIR T W, SONDHI D, COLE P A.
Expressed protein ligation: a general method for protein engineering
[J]. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95(12): 6705-6710.
[本文引用: 1]
[22]
MALINS L R, PAYNE R J.
Recent extensions to native chemical ligation for the chemical synthesis of peptides and proteins
[J]. Current Opinion in Chemical Biology, 2014, 22: 70-78.
[本文引用: 1]
[23]
VILA-PERELLO? M, LIU Z, SHAH N H, et al.
Streamlined expressed protein ligation using split inteins
[J]. Journal of the American Chemical Society, 2013, 135: 286-292.
[本文引用: 1]
[24]
MAZMANIAN S K, LIU G, TON-THAT H, et al.
Staphylococcus aureus sortase, an enzyme that anchors surface proteins to the cell wall
[J]. Science, 1999, 285(5428): 760-763.
[本文引用: 1]
[25]
ATONS J M, CHEW G L, GUIMARAES C P, et al.
Site-specific N-and C-terminal labeling of a single polypeptide using sortases of different specificity
[J]. Journal of the American Chemical Society, 2009, 131(31): 10800-10801.
[本文引用: 1]
[26]
NUIJENS T, TOPLAK A, SCHMIDT M, et al.
Natural occurring and engineered enzymes for peptide ligation and cyclization
[J]. Frontiers in Chemistry, 2019, 7: 829.
[本文引用: 8]
[27]
MAO H, HART S A, SCHINK A, et al.
Sortase-mediated protein ligation: a new method for protein engineering
[J]. Journal of the American Chemical Society, 2004, 126(9): 2670-2671.
[本文引用: 1]
[28]
TANAKA T, YAMAMOTO T, TSUKIJI S, et al.
Site-specific protein modification on living cells catalyzed by sortase
[J]. ChemBioChem, 2008, 9: 802-807.
[本文引用: 3]
[29]
YAMAMOTO T, NAGAMUNE T.
Expansion of the sortase-mediated labeling method for site-specific N-terminal labeling of cell surface proteins on living cells
[J]. Chemical Communications, 2009, 9: 1022-1024.
[本文引用: 1]
[30]
HESS G T, CRAGNOLINI J J, POPP M W, et al.
M13 bacteriophage display framework that allows sortase-mediated modification of surface-accessible phage proteins
[J]. Bioconjugate Chemistry, 2012, 23(7): 1478-1487.
[本文引用: 3]
[31]
VAN'T HOF W, MA?áSKOVá S H, VEERMAN E C I, et al.
Sortase-mediated backbone cyclization of proteins and peptides
[J]. Biological Chemistry, 2015, 396(4): 283-293.
[本文引用: 1]
[32]
BOLSCHER J G M, OUDHOFF M J, NAZMI K, et al.
Sortase A as a tool for high-yield histatin cyclization
[J]. The FASEB Journal, 2011, 25(8): 2650-2658.
[本文引用: 3]
[33]
STANGER K, MAURER T, KALUARACHCHI H, et al.
Backbone cyclization of a recombinant cystine-knot peptide by engineered Sortase A
[J]. FEBS Letters, 2014, 588(23): 4487-4496.
[本文引用: 1]
[34]
ZHANG J, YAMAGUCHI S, NAGAMUNE T.
Sortase A-mediated synthesis of ligand-grafted cyclized peptides for modulating a model protein-protein interaction
[J]. Biotechnology Journal, 2015, 10: 1499-1505.
[本文引用: 1]
[35]
SCHMOHL L, SCHWARZER D.
Sortase-mediated ligations for the site-specific modification of proteins
[J]. Current Opinion in Chemical Biology, 2014, 22: 122-128.
[本文引用: 1]
[36]
SCHMIDT M, TOPLAK A, QUAEDFLIEG P J L M, et al.
Enzyme-catalyzed peptide cyclization
[J]. Drug Discovery Today. Technologies, 2017, 26: 11-16.
[本文引用: 1]
[37]
THOMPSON R E, STEVENS A J, MUIR T W.
Protein engineering through tandem transamidation
[J]. Nature Chemistry, 2019, 11: 737-743.
[本文引用: 1]
[38]
LI Y, LI Y, PAN M, et al.
Irreversible site-specific hydrazinolysis of proteins by use of sortase
[J]. Angewandte Chemie International Edition, 2014, 53: 2198-2202.
[本文引用: 1]
[39]
NGUYEN G K T, WANG S J, QIU Y B, et al.
Butelase 1 is an Asx-specific ligase enabling peptide macrocyclization and synthesis
[J]. Nature Chemical Biology, 2014, 10(9): 732-738.
[本文引用: 1]
[40]
NGUYEN G K T, KAM A, LOO S, et al.
Butelase 1: a versatile ligase for peptide and protein macrocyclization
[J]. Journal of the American Chemical Society, 2015, 137(49): 15398-15401.
[本文引用: 2]
[41]
NGUYEN G K T, QIU Y B, CAO Y, et al.
Butelase-mediated cyclization and ligation of peptides and proteins
[J]. Nature Protocols, 2016, 11(10): 1977-1988.
[本文引用: 1]
[42]
HEMU X, QIU Y B, NGUYEN G K T, et al.
Total synthesis of circular bacteriocins by Butelase 1
[J]. Journal of the American Chemical Society, 2016, 138(22): 6968-6971.
[本文引用: 3]
[43]
HEMU X, ZHANG X H, TAM J P.
Ligase-controlled cyclo-oligomerization of peptides
[J]. Organic Letters, 2019, 21(7): 2029-2032.
[本文引用: 1]
[44]
NGUYEN G K T, CAO Y, WANG W, et al.
Site-specific N-terminal labeling of peptides and proteins using butelase 1 and thiodepsipeptide
[J]. Angewandte Chemie International Edition, 2015, 54: 15694-15698.
[本文引用: 3]
[45]
BI X, YIN J, NGUYEN G K T, et al.
Enzymatic engineering of live bacterial cell surfaces using butelase 1
[J]. Angewandte Chemie International Edition, 2017, 56: 7822-7825.
[本文引用: 3]
[46]
CAO Y, NGUYEN G K T, CHUAH S, et al.
Butelase-mediated ligation as an efficient bioconjugation method for the synthesis of peptide dendrimers
[J]. Bioconjugate Chemistry, 2016, 27(11): 2592-2596.
[本文引用: 1]
[47]
CAO Y, NGUYEN G K T, TAM J P, et al.
Butelase-mediated synthesis of protein thioesters and its application for tandem chemoenzymatic ligation
[J]. Chemical Communications, 2015, 51(97): 17289-17292.
[本文引用: 3]
[48]
NUIJENS T, SCHMIDT M. Butelase 1-mediated ligation of peptides and proteins [M]. New York: Humana Press, 2019: 83-109.
[本文引用: 1]
[49]
HARRIS K S, DUREK T, KAAS Q, et al.
Efficient backbone cyclization of linear peptides by a recombinant asparaginyl endopeptidase
[J]. Nature Communications, 2015, 6: 10199.
[本文引用: 1]
[50]
YANG R, WONG Y H, NGUYEN G K T, et al.
Engineering a catalytically efficient recombinant protein ligase
[J]. Journal of the American Chemical Society, 2017, 139: 5351-5358.
[本文引用: 1]
[51]
POLGARF L, BENDER M L.
The reactivity of thiol-subtilisin, an enzyme containing a synthetic functional group
[J]. Biochemistry, 1967, 6(2): 610-620.
[本文引用: 1]
[52]
NAKATSUKA T, SASAKI T, KAISER E T.
Peptide segment coupling catalyzed by the semisynthetic enzyme thiolsubtilisin
[J]. Journal of the American Chemical Society, 1987, 109(12): 3808-3810.
[本文引用: 1]
[53]
ABRAHMSéN L, TOM J, BURNIER J, et al.
Engineering subtilisin and its substrates for efficient ligation of peptide bonds in aqueous solution
[J]. Biochemistry, 1991, 30(17): 4151-4159.
[本文引用: 1]
[54]
CHANG T K, JACKSON D Y, BURNIER J P, et al.
Subtiligase: a tool for semisynthesis of proteins
[J]. Proceedings of the National Academy of Sciences of the United States of America, 1994, 91(26): 12544-12548.
[本文引用: 1]
[55]
ATWELL S, WELLS J A.
Selection for improved subtiligases by phage display
[J]. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(17): 9497-9502.
[本文引用: 1]
[56]
WEEKS A M, WELLS J A.
Engineering peptide ligase specificity by proteomic identification of ligation sites
[J]. Nature Chemical Biology, 2018, 14(1): 50-57.
[本文引用: 1]
[57]
JACKSON D Y, BURNIER J, QUAN C, et al.
A designed peptide ligase for total synthesis of ribonuclease a with unnatural catalytic residues
[J]. Science, 1994, 266(5183): 243-247.
[本文引用: 4]
[58]
JACKSON D Y, BUMIER J P, WELLS J A.
Enzymatic cyclization of linear peptide esters using subtiligase
[J]. Journal of the American Chemical Society, 1995, 117: 819-820.
[本文引用: 1]
[59]
HENAGER S H, CHU N, CHEN Z, et al.
Enzyme-catalyzed expressed protein ligation
[J]. Nature Methods, 2016, 13(11): 925-927.
[本文引用: 1]
[60]
MAHRUS S, TRINIDAD J C, BARKAN D T, et al.
Global sequencing of proteolytic cleavage sites in apoptosis by specific labeling of protein N termini
[J]. Cell, 2008, 134: 866-876.
[本文引用: 4]
[61]
NUIJENS T, TOPLAK A, QUAEDFLIEG P J L M, et al.
Engineering a diverse ligase toolbox for peptide segment condensation
[J]. Advanced Synthesis & Catalysis, 2016, 358(24): 4041-4048.
[本文引用: 2]
[62]
SCHMIDT M, TOPLAK A, QUAEDFLIEG P J L M, et al.
Omniligase-1: a powerful tool for peptide head-to-tail cyclization
[J]. Advanced Synthesis & Catalysis, 2017, 359: 2050-2055.
[本文引用: 1]
[63]
PAWLAS J, NUIJENS T, PERSSON B, et al.
Sustainable, cost-efficient manufacturing of therapeutic peptides using chemo-enzymatic peptide synthesis (CEPS)
[J]. Green Chemistry, 2019, 21: 6451-6467.
[本文引用: 3]
[64]
SCHMIDT M, HUANG Y, OLIVEIRA E F T, et al.
Efficient enzymatic cyclization of disulfide-rich peptides using peptiligases
[J]. ChemBioChem, 2019, 20(12): 1524-1529.
[本文引用: 1]
[65]
RICHELLE G J J, SCHMIDT M, IPPEL H, et al.
A one-pot "triple-c'' multicyclization methodology for the synthesis of highly constrained isomerically pure tetracyclic peptides
[J]. ChemBioChem, 2018, 19(18): 1934-1938.
[本文引用: 1]
[66]
STREEFKERK D E, SCHMIDT M, IPPEL J H, et al.
Synthesis of constrained tetracyclic peptides by consecutive CEPS, CLIPS, and oxime ligation
[J]. Organic Letters, 2019, 21: 2095-2100.
[本文引用: 1]
[67]
SCHMIDT M, TOPLAK A, ROZEBOOM H J, et al.
Design of a substrate-tailored peptiligase variant for the efficient synthesis of thymosin-α1
[J]. Organic & Biomolecular Chemistry, 2018, 16: 609-618.
[本文引用: 1]
[68]
HENNINOT A, COLLINS J C, NUSS J M.
The current state of peptide drug discovery: back to the future?
[J]. Journal of Medicinal Chemistry, 2018, 61: 1382-1414.
[本文引用: 1]
[69]
HUANG P, BOYKEN S E, BAKER D.
The coming of age of de novo protein design
[J]. Nature, 2016, 537: 320-327.
[本文引用: 1]
[70]
MILLS J H, KHARE S D, BOLDUC J M, et al.
Computational design of an unnatural amino acid dependent metalloprotein with atomic level accuracy
[J]. Journal of the American Chemical Society, 2013, 135(36): 13393-13399.
[本文引用: 1]




南京肽業(yè)生物科技有限公司
地址:
Email: info@njpeptide.com
總機:025-58361106-801
